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SUMMARY

This paper describes turbulence properties for a residual-based turbulence model using fine-scale
approximations of strain and vorticity, emanating from a split of the non-linear term in the Navier–Stokes
equations. We will discuss the modelling of the fine-scale terms and their impact in the light of simulation
results of turbulent transition of the Taylor–Green vortex. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Efficient methods for the simulation of complex turbulent flows, governed by the Navier–Stokes
equations, are still a challenging task in scientific computing and engineering. The difficulty lies in
the seemingly random behaviour of the flow and the broad range of scales present, going from the
size of the physical objects, which can be of the order of several meters, down to submillimeter
sized eddies. For problems where only the mean quantities are of interest, such as drag and lift,
methods considering the ensemble average of the flow, the so-called Reynolds averaged Navier–
Stokes equations, are often enough. In cases where higher frequency phenomena are studied, such
as flow-induced noise, one needs to use large eddy simulation (LES) techniques, where not only
the average flow field is resolved but also larger unsteady structures are included.

The general approach to derive the LES equations is to apply a low-pass filter to the Navier–
Stokes equations, in which case an unknown subgrid scale stress tensor appears in the equations
that needs to be modelled. An alternative way is to consider the numerical truncation as a filtering
operation and use the implicit numerical error to represent the effect of the unresolved scales.
For an overview on the background of LES and different approaches to model the subgrid scales,
see the book by Sagaut [1] and the references therein.
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This paper deals with an approach to subgrid scale modelling derived in the framework of
the variational multiscale (VMS) method, see Hughes [2] and Hughes et al. [3], together with
using residuals when computing the fine-scale behaviour. The VMS method provides a general
framework for derivation of multiscale methods where the effects of fine (unresolved) scales on
coarse (resolved) scale are accounted for through additional terms in the variational formulation.
The additional terms involve the fine-scale part of the solution which satisfies an equation driven
by the residual of the coarse-scale part of the solution. In the simplest case, the fine scales can be
approximated by a suitable scaling of the residual. This approach is closely related to fine scales
approximated by element bubble functions, see Brezzi et al. [4] and Arbogast [5]. While derived
in a completely different setting, similar ideas are present in the two-level simulation model by
Kemenov and Menon [6]. There are also examples of stabilization techniques based on multiscale
ideas such as the one by Codina [7] and the selective stabilization technique by Tezduyar and
Sathe [8], which allows different stabilization to be applied on different scales. Applications of
multiscale techniques to turbulence modelling appear in Hughes et al. [9] and Hughes and Oberai
[10], where a modified Smagorinsky model only acting on the fine-scale part of the solution was
applied, and in Calo [11], Hughes et al. [12], and Scovazzi [13], where a residual-based turbulence
model was introduced.

The specific formulation used in this paper is based on splitting the non-linear term in the
Navier–Stokes equations into vorticity and strain, and apply the multiscale modelling to these two
quantities instead of velocity or velocity gradient as is done in, e.g. [11–13]. The rationale is that
we believe it may be easier to capture phenomenon such as vorticity stretching, which is important
in turbulence dynamics, when this splitting is used. Moreover, Kerr et al. [14] show that vorticity
is an important mechanism in the turbulent energy transfer process. It is shown, both in theory
and in numerical experiments, that the effects of unresolved subgrid scales in this formulation are
not necessarily stabilizing but on the contrary may drive certain important phenomena in the flow.
This is expected since the discretization often introduce artificial viscosity that shadows or kills
important flow structures, and a proper description of subgrid scale effects should thus compensate
for such effects. This is generally not the case for contemporary turbulence models. Also, key to
these results is that we do not start to model the effects of unresolved scales directly in the partial
differential equation setting, as is customary in traditional approaches to turbulence modelling, but
instead take the effect of the numerical discretization into account in our approximation of the
subgrid scales. The application studied in this paper is the Taylor–Green vortex problem, where
an initially low-frequency sinusoidal velocity field undergoes transition to turbulence. This is a
challenging case due to the need to correctly capture the turbulent production in this statistically
unsteady flow.

The outline of the paper is as follows: In Section 2, we introduce a VMS framework for the
Navier–Stokes equations, in Section 3 we discuss residual-based approximations of the fine-scale
contributions, in Section 4 we study the effects of these terms on the Taylor–Green vortex, and
finally in Section 5 we discuss our results and future research directions.

2. THE VARIATIONAL MULTISCALE FRAMEWORK FOR NAVIER-STOKES EQUATIONS

2.1. The Navier–Stokes equations

In this paper, we shall consider the flow of an incompressible fluid in a cube � ⊂R3 with
periodic boundary conditions in all three directions. The flow is governed by the Navier–Stokes
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equations: find the velocity u : �→R3 and pressure p : �→R such that

u̇ + u · ∇u + ∇ p − ��u= 0 (1)

∇ · u= 0 (2)

together with periodic boundary conditions in all three directions and given initial velocity
field u=u0 at time t = 0. We shall, in particular, consider the so-called Taylor–Green vortex
corresponding to the initial conditions

u1,0 = sin(x) cos(y) cos(z)

u2,0 = − cos(x) sin(y) cos(z) (3)

u3,0 = 0

together with a divergence-free pressure field computed via the Poisson equation on the cube
� =[0, 2�]3. The Reynolds number is defined as Re=UL/�, where, for this set-up, the velocity
scale U = 1 and the length scale L = 1, and � is the kinematic viscosity. This flow is a simple yet
challenging problem involving vortex stretching and production of small-scale eddies.

We next introduce the notationVu =[H1(�)]3,Vp = L2(�) for the velocity and pressure spaces,
respectively, and V=Vu ×Vp for the combined space. The variational form of (1) reads: find
(u, p) : [0, t] →V such that

(u̇, v) + (u · ∇u, v) − (p, ∇ · v) + (∇ · u, q) + (�∇u, ∇v)= 0 (4)

for all (v, q) ∈V. Since we consider an incompressible flow, we can use the following identity:

u · ∇u= Su +X×u (5)

where S = (∇u + (∇u)T)/2 is the strain tensor and X=x/2= (∇ ×u)/2 is (half) the vorticity,
and rewrite the variational statement in the form: find (u, p) : [0, t] →V such that

(u̇, v) + (Su, v) + (X×u, v) − (p, ∇ · v) + (∇ · u, q) + (�∇u, ∇v) = 0 (6)

for all (v, q) ∈V, which brings out the action of the strain and vorticity.

2.2. The vorticity–strain VMS

In order to reach a computationally affordable solution we need to remove the smallest scales
in the flow and only compute the solution for larger-scale flow features. The approach chosen
here is based on using variational arguments to split the problem into different scales where the
small-scale solution is approximated or modelled and its impact on the large-scale equations is
computed, see Hughes et al. [3] for an overview of the basic ideas. Choose two spaces Vc ⊂V
and Vf ⊂V such that

V=Vc ⊕ Vf (7)

whereVc is associated with the coarse (large) scale andVf is associated with the fine (small) scale.
That is, Vc represents the space where we seek a numerical solution to our flow, and Vf spans
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the subgrid scales which are subject to approximation or modelling. Thus Vc typically consists of
piecewise polynomial finite element functions.

Introducing these spaces in (4) gives us the following weak formulation: find (uc, pc) ∈Vc and
(uf, pf) ∈Vf such that

0= (u̇c + u̇f, v) + ((Sc + Sf)(uc + uf), v) + ((Xc +Xf) × (uc + uf), v)

− (pc + pf,∇ · v) + (∇ · (uc + uf), q) + (�∇(uc + uf),∇v) (8)

for all (v, q)= (vc, qc) ∈Vc and (v, q)= (vf, qf) ∈Vf. This separates the scales in the equations
into two parts. Choosing coarse-scale test functions we get the coarse-scale equation where the
fine-scale contributions account for the effects of the fine scales on the coarse scales, and vice versa.

The energy exchange between scales in Navier–Stokes equations mainly occurs in the non-linear
term and thus we focus on the fine-scale information contained in the non-linear terms involving
the fine-scale strain Sf, the fine-scale vorticity Xf, and the fine-scale velocity uf. We note that
although there is a relation between S and X in an incompressible flow, the discrete solution is
not divergence free and thus both terms need to be included. Rewriting the non-linear term once
more to bring out the action of these three fine-scale quantities we get

((Sc + Sf)(uc + uf), v) + ((Xc +Xf) × (uc + uf))

= (Scuc +Xc ×uc) + (Sfuc +Xf ×uc) + (Scuf +Xc ×uf) + (Sfuf +Xf ×uf)

=uc · ∇uc + (Sfuc +Xf ×uc) + uf · ∇uc + (Sfuf +Xf ×uf) (9)

The first of these terms is the ordinary coarse-scale non-linear term, the second the interaction
between coarse-scale transport and fine-scale vorticity and strain, the third the fine-scale transport
of the coarse-scale velocity gradient, and the fourth fine-scale/fine-scale interaction. There are
several modelling alternatives possible for the three terms involving the unresolved fields. Here we
choose to apply quasi-stationary approximations of the evolution of the fine-scale vorticity, strain,
and velocity, respectively, and study their impact on transition to turbulence. Some alternative
modelling approaches will be briefly discussed in the concluding remarks of the paper.

Without going into details in theoretical analysis of this method, some insight on possible
benefits of this formulation can be gained from the following simple arguments. Expanding the
vorticity in terms of the orthonormal eigenvectors ni , with corresponding eigenvalues �i , of the
strain tensor Sc gives

X+ �ScX=
3∑

i=1
(1 + �X�i )�ini (10)

Recalling that �1 + �2 + �3 = 0 we see that there is always at least one positive and one negative
eigenvalue. Thus, the modified vorticity aligns with the eigenvector associated with the largest
eigenvalue of the strain tensor leading to a stronger tendency for vortex stretching, a physical
phenomenon believed to be important in the creation of turbulence. This motivates the somewhat
intuitive comment on possible advantages of using a vorticity–strain representation of the velocity
gradient in the introduction. Moreover, Kerr et al. [14] performs an a priori analysis of the subgrid
scale energy transfer in isotropic turbulence, which indicates the importance of vorticity–velocity
interactions, both with respect to correlation with the traditional subgrid stress tensor and with
respect to the transfer of kinetic energy between coarse and fine scales.
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Thus, assuming access to computable approximations of Xf =Xf(uc, pc), Sf = Sf(uc, pc), and
uf =uf(uc, pc) given (uc, pc) we get the following vorticity–strain VMS method: find (uc, pc) :
[0, t] →Vc such that

0= (u̇c, vc) + ((uc + uf) · ∇uc, vc) + (Sfuc +Xf ×uc, vc)

+ (Sfuf +Xf ×uf, vc) − (pc, ∇ · vc) + (∇ · uc, qc) + (�∇uc, ∇vc) (11)

for all (vc, qc) ∈Vc. To close this equation, we need to specify how Sf(uc, pc), Xf(uc, pc), and
uf(uc, pc) are to be computed.

3. RESIDUAL-BASED MODELLING OF THE FINE-SCALE STRAIN,
VORTICITY, AND VELOCITY

Since the aim is to reduce the computational complexity compared with direct numerical simulation
(DNS) of the Navier–Stokes equations, affordable approximations of Sf, Xf, and uf must be
constructed. Starting with the evolution equations for strain, vorticity, and velocity, respectively, we
will simplify these to algebraic, ordinary differential equations. Furthermore, quasi-static conditions
for the fine scales are assumed, which further reduces the complexity and lead to an almost linear
scaling of the coarse-scale residuals. This yields a simple and cheap fine-scale approximation,
although very crude. Despite this, the computational experiments indicate that some interesting
features are captured, but they also show a need for a more careful approach in order to bring out
more aspects of the physics involved. One reason to the good performance of these approximations
might be that it has been shown, see [14, 15], that the largest unresolved scales are the most
important and it is reasonable to believe that they are related to the residuals.

3.1. Evolution of fine-scale vorticity

We begin with the approximation of the fine-scale vorticity Xf. Taking the curl of the momentum
equation (1) we obtain the following equation for the vorticity:

Ẋ+ u · ∇X= SX+ ��X (12)

Setting X=Xc +Xf, S ≈ Sc, and u≈ uc we get an approximate equation for the evolution of the
fine-scale vorticity Xf

(Ẋf + uc · ∇Xf − ScXf + ��Xf, vf) = (R�(Xc, Sc,uc), vf) (13)

where R�(Xc, Sc,uc) =−Ẋc − uc · ∇Xc + ScXc + ��Xc is the coarse-scale vorticity residual.
Following Codina [7] and Codina et al. [16], the left-hand side is approximated as follows:(

Ẋf + 1

��
Xf, vf

)
= (R�(Xc, Sc, uc), vf) (14)

where 1/�� = (c1|uc|/h+c2�/h2) with constants c1 and c2. According to the mean value theorem
for Fourier series, there exists constants c1 and c2 such that the solution to (14) has the same
element-wise L2-norm as the solution to (13). The coarse-scale strain acting on Xf has been
neglected in �� since it appears to be small compared with |uc|/h and �/h2.
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Assuming a quasi-stationary behaviour of the fine-scale fields, i.e. Ẋ≈ 0, we finally obtain the
following expression for Xf:

Xf ≈ ��R�(Xc) (15)

3.2. Evolution of fine-scale strain

Repeating the arguments, we have that the strain tensor S satisfies the equation, see [17]
Ṡ + u · ∇S =−STS − (XXT − IX ·X)/4 − H(p) + ��S (16)

where I is the identity matrix and H(p) is the pressure Hessian. Setting S = Sc + Sf, u≈uc, and
X=Xc + Xf ≈Xc + ��R�(Xc), we get the following equation for the evolution of fine-scale
strain tensor Sf:

Ṡf + uc · ∇Sf + 2STc Sf + STf Sf + H(pf) − ��Sf

=−Ṡc − uc · ∇Sc − STc Sc + ��Sc − (XXT − IX ·X)/4 − H(pc)

= RS(Sc,X, uc, pc) (17)

where RS(Sc,X,uc, pc) =−Ṡc−uc ·∇Sc− STc Sc+��Sc−(XXT− IX ·X)/4−H(pc). Assuming
that pf = 0, neglecting higher-order terms, and approximating the solution to this problem by the
right-hand side, as above, we get

Sf = �S RS(Sc,X, pc) (18)

where we set �S = �� = (c1|uc|/h + c2�/h2).
Here, we note the presence of the possibly destabilizing term −STc Sc, which gives rise to the

additional driving term

−(Scuc, Scvc) (19)

We also have

−((XXT − IX ·X)uc, vc) = (uc, vc)(X,X) − (uc,X)(vc,X) = (u⊥
c , v⊥

c )(X,X) (20)

which appears to give a certain control over u⊥
c the component of the velocity orthogonal to the

vorticity, thus adding some stability. Moreover, numerical tests have shown that neglecting the
term STf Sf does not affect the stability significantly.

3.3. Evolution of fine-scale velocity

Following the same procedure as above, we get

uf = �uRu(uc, pc) (21)

where 1/�u = 1/�� = 1/�S = (c1|uc|/h+ c2�/h2) and Ru(uc, pc) = −u̇c −uc · ∇uc −∇ pc + ��uc
and where the fine-scale pressure gradient is neglected.
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4. THE TAYLOR–GREEN VORTEX

The flow used here to study the properties of the presented scheme is the aforementioned Taylor–
Green vortex which consists of incompressible flow in the cube [0, 2�]3 with periodic boundary
conditions in all three directions and initial conditions defined by (3). The Re-number in this
study is Re= 1600. This flow is, despite its simplicity, challenging, since it acts as a fundamental
prototype flow including phenomena such as vortex stretching and consequent production of small-
scale eddies as well as the dynamics of transition to turbulence and the following decay. By tracking
the development of kinetic energy and enstrophy we can test a scheme’s capabilities to simulate
the existence of an inertial sub-range in the kinetic energy spectra for sufficiently high Re numbers
and the finite (viscosity independent) energy dissipation limit law. Here, the transitional phase for
times t�10 has been studied.

Figure 1 shows the temporal evolution of the flow in terms of iso-surfaces of the second largest
eigenvalue of the velocity gradient, �2, at t = 2.5, 5, 7.5, and 10. A series of events leading to
the transition and decay mentioned above have been identified for this problem, see e.g. [15, 18].
First, the initial quasi-inviscid evolution leads to the formation of vortex sheets and secondary

Figure 1. Isosurfaces of �2 =‖∇ × u‖ −
√

‖∇ux‖2 + ‖∇uy‖2 + ‖∇uz‖2 = 0.25, computed with N = 96,
for t = 2.5, 5.0, 7.5, and 10.0.
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vortices around t ≈ 5, which subsequently rolls-up and remain unchanged until t ≈ 6.5. Thereafter,
the rolled-up sheets break up and form distorted high-vorticity patches in a background of low
vorticity. Furthermore, these high-vorticity (coherent structure) patches starts to break down at
about t ≈ 8 so that around t ≈ 9 transition into turbulence occurs. This results in smaller-scale
(but organized) vortices, which then slowly decays (after about t ≈ 10) into a fully developed
(disorganized) worm-vortex-dominated flow usually found in fully developed turbulence.

4.1. Numerical methodology

The presented vorticity–strain–VMS has been implemented in a finite-element setting using linear
tetrahedral elements and time stepping is done via a conditionally stable operator splitting scheme,
originally proposed by Ren and Utnes [19]. The algorithm consists of four steps: the calculation of
an intermediate velocity field in two steps (omitting pressure and body forces), solution of a Poisson
equation for the pressure (arising from the incompressibility constraint (2)), and a correction of the
intermediate velocity field. The fine-scale terms (15), (18), and (21) are added as explicit forces
to the resolved flow field. In order to study the behaviour of each of the three fine-scale terms, we
multiply the different �i : s with a weighting parameter �i making it possible to amplify or dampen
the influence of the fine-scale vorticity, strain and velocity, respectively. For stability reasons, this
parameter was chosen to be � = 1

15 ; for larger � the fine-scale terms showed a tendency to become
too dominant, a problem we discuss further below.

4.2. Computational results

The Taylor–Green vortex flow described is computed up to t = 10, with mesh resolutions
of ∼ N 3 + (N − 1)3 for N = 64 and 96 and at Reynolds number Re= 1/�= 1600. The DNS data
provided by Brachet et al. [20] is used as a reference.

In Figure 2, the mean dissipation of kinetic energy, −d〈K 〉/dt , where K = 1
2uiui is the kinetic

energy, is plotted without any fine-scale modelling applied. We see that for N = 64, the discrepancy
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Figure 2. Mean dissipation of kinetic energy, −d〈K 〉/dt .
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is large, mainly in three aspects. First, the initial dissipation is too high, secondly, a peak appears
at t ≈ 5 when the secondary vortices appear, and finally, the main peak at t ≈ 9 appears too late
and is too small. Switching to the higher resolution with N = 96, the initial dissipation is still too
high, while the first peak is significantly reduced and the second one is considerably better both
in time and in value. These problems occur also in other LES simulations of the Taylor–Green
problem, see e.g. [18], but are not quite as severe. We note, however, that the first peak exists also
in the DNS but is very small, more of a bump than a peak. Studying the behaviour of the flow for
lower Re, where the transition to turbulence never occurs, it seems that this peak is the only one
existing. This is also the case if even lower mesh resolution is attempted. Our conclusion is that
the previously mentioned formation of vortex sheets and secondary vortices is at or beyond the
actual resolution limit maybe even at N = 96 with a resulting increase in numerical diffusion. Once
formed, the scheme recuperates until the breakdown of these structures causes the appearance of
even smaller scales, which are not captured and thus the second peak is underestimated.

A previous study [21] has indicated that the derived fine-scale terms might have a tendency
to drive the flow and even to destabilize it. The implications would be that when adding the
subgrid vorticity, strain, and velocity, we might expect the discrepancy of the first peak to decrease
but at the expense of worse prediction of the second peak. We see, however, that this is not the
case. In Figure 3, the inclusion of the fine-scale terms yields a strong reduction of the first peak,
while the second peak is clearly less affected. This implies that the slightly more detailed analysis
implemented for this study improves the overall performance of the scheme.

For N = 96, the predicted dissipation is now in better agreement with DNS. For times between
t = 6 and 8, where the intermediate-sized structures in the form of vortex sheets are beginning to
roll up and break down, we have excellent agreement and the peak at t ≈ 9 is underestimated by
less than 10%. It is, however, disappointing that the initial dissipation is still slightly high. For
the coarser mesh with N = 64, the first peak is reduced to the same level as initially could be
seen on the finer resolution, but the prediction right after that peak is affected negatively. As a
comparison, the standard one-equation eddy viscosity model by Shumann [22], which generally
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Figure 3. Mean dissipation, with and without the fine-scale terms. Included is also a computation with
the one-equation eddy viscosity model on N = 64.
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Figure 4. Mean dissipation, effect of the different fine-scale terms.

gives good results, see e.g. [23], is included in Figure 3. Unfortunately, computations with this
model is at the moment only available on the coarse mesh with N = 64.

Studying the effect of each of the fine-scale terms, see Figure 4, we see that Sf has a strong
driving effect before and around the first erroneous peak and is actually responsible for almost all of
the improvement. This might be an indication that the operator splitting method implemented has
problems enforcing the incompressibilty constraint, since, as mentioned above, in a divergence-free
flow the strain can be expressed via the vorticity and the gradient of a scalar. This needs to be
investigated further by implementing the fine-scale terms using another time-stepping scheme. If
this is the reason, however, it shows also that this kind of residual-based turbulence modelling
takes numerical defects of the low resolution into account. The fine-scale velocity is also a driving
term, but more so around the second peak than the first. The effect is, however, much smaller
than for the fine-scale strain. When it comes to Xf, this quantity has a slight dissipative behaviour
during the entire simulation.

5. CONCLUSIONS

A VMS for LES, based on a vorticity–strain formulation of the Navier–Stokes equations, has been
presented and applied to the initial, transitional part of the Taylor–Green vortex flow problem. The
method leads to the addition of forces to the coarse-scale equations representing the interaction
between fine-scale vorticity, strain and velocity, and coarse-scale velocity. The fine-scale quantities
are driven by the residuals of the resolved flow field, thus taking both numerical and physical
underresolution into account. In this study, the evolution on the fine scales is approximated with
easily computed algebraic expressions.

The numerical tests show promising results with a significant correction of an erroneous dis-
sipation peak at t ≈ 5, where intermediate-sized flow structures are beginning to form, without
damaging the prediction for later times. This indicates that the fine-scale addition counteracts the
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numerical diffusion while not disturbing the physical one. This is despite the much simplified
expressions used. The problem with the first peak still remains though, but we doubt that there
is room for much improvement, at least on coarser meshes. There it seems that there are energy
containing structures that cannot be represented on the mesh, and this contradicts the basic assump-
tion in LES that enough of the energetic structures need to be resolved. Moreover, the scheme
does not capture the expected increased energy flow from resolved to subgrid scales for times
t � 7. According to Kerr et al. [14] a large amount of this energy exchange occurs in the terms
involving uf, and although we see the correct trend in our simulations it is much too weak.

The future development of the proposed VMS formulation includes time tracking of the fine-
scale fields. This is necessary in order to include the history of the flow, which is likely to affect
also the small scales. Lifting the assumption of quasi-stationary fine scales would remove some of
the inconsistencies built into the �i parameters. Moreover, the high initial dissipation and the large
first peak leads us to suspect that the predictor–corrector scheme used might not be the best choice.
A better approach needs to be investigated. When it comes to correcting the lack of dissipation on
the smallest scales, one could consider replacing the small–small-scale interaction, represented by
the last term in (9), by a standard LES functional subgrid model. This can be compared with the
so-called mixed subgrid models in the LES literature.
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